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Huygens, Tractional Motion and Some Thoughts on the History of Mathematics 
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Note: This is the translation of my inaugural lecture, held .March 20, 1987, as exlraordinar)' professor in 
the history' of mathematics at the University of Utrecht. The present version differs from the original 
Dutch text in that the salutation at the beginning and the personal words at the end have been left out 
and that some errors have been corrected. The original version was separately published (II.J.M. Bos, 
Vamtit Hcrkt'nning en Verbazing (Utrecht: OMI Grafisch Bcdrijf, 1987); the main text has also been 
published in Euclides 63, 1987. pp. 65-76. 

Recognition and wonder. - These two experiences are essential motives behind 
interest in the past. For that reason I have chosen them as guidelines in presenting 
my specialty, the history of mathematics, today, upon my accession to office as 
extraordinary professor. 

Recognition makes it possible to distinguish historical events and thus initiates 
the link of past to present. If recognition or affinity is absent, earlier events can 
hardly, if at all, be historically described. Wonder, on the other hand, is indispensable 
too. The unexpected, the essentially different nature of occurrences in the past excites 
the interest and raises the expectation that something can be discovered and learned. 
History studied without wonder reduces to a mere listing of recognizable past events, 
which differ from what is familiar only by having another date. 

Let me illustrate this by two examples which for me strongly evoke the two experien
ces. In the first example recognition is foremost. It concerns a Babylonian clay tablet 
(see Plates 1 and 2) extant in the Louvre Museum. The tablet dates from about 1750 
before Christ.' For most of you it probably evokes no immediate experience of 
recognition. The text contains the solution of a mathematical problem. It is about a 
rectangle with length, width and area. The sum of length and width is 27; the 
difference of length and width, added to the area, gives 183. Question: what are the 
length and the width? Evidently the problem implies two equations in two unknowns. 
We solve these by first eliminating one of the unknowns. That leads to a quadratic 
equation, whose roots we find with the familiar "a,ft,c-formula": 

-h ± v/62 - \ac 

The text is analyzed in F. 'I'hureau-Dangin, "Le pri.sme mathemafique AO 8862," Re\ue d'Assyrio-
logic el d'Archcologie Orientate 29, 1932, p. 10, and in O. Ncugebauer, Mtitheinatische Kcihchrifttekste 
(Berlin, 1935-1937), vol. 1, p. 113; vol. 2, PI. 35. See Plalcs 1 and 2. 

Tractrix 1, 1989, 3-20. 
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Plate 1 - Babylonian clay tablet with mathematical text. Photograph from Revue d'Assiriologie el 
d'Archeologie Orientale 29, 1932, PI. 1, opposite p, 4; see note 1. 
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Plaee 2 - Transcription of the tablet of Plate 1; from O. Neugebauer, Mathematische Keilschrifuekste 
(Berlin, 19.35-1937), vol. 2. PI. 35; see notes 1 and 2. 
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Well, some 4000 years ago the Babylonians calculated almost in the same way. To be 
sure, the formula is not on the tablet, but the numbers that the mathematician wrote 
down in his calculation (they are in fact not difficult to read)' are precisely the ones 
one encounters when applying the a,fc,c-formula to the given problem. The modern 
and the Babylonian procedures are almost exactly the same. 

Since 1935, when Neugebauer incorporated it in his grand study of mathemati
cal cuneiform texts, this tablet is a commonplace in writings on the history of mathe
matics. I meet it often, therefore, and I can assure you that to me it always evokes a 
strong experience of recognition: The a,b,c - formula, quintessence of school algebra, 
directly recognizable despite a time difference of almost 4000 years! A piece of 
culture that remained, untouched by the emergence and decline of civilizations. No 
matter how old, this is undoubtedly mathematics. Freudenthal spoke in his inaugural 
lecture^ about 5000 years of international science, and it is especially mathematics 
that makes us recognize science in the old texts on clay. That recognition is a 
poignant experience. It is also an invitation to dwell upon old Babylonian mathe
matics at somewhat more length. But I shall not do that here; I shall proceed to my 
second example which relates to wonder. 

In 1812, during Napoleon's Russian campaign Jean-Victor Poncelet, a military 
engineer, was taken into captivity. He spent eighteen months in a prisoner of war 
camp in Saratov on the Volga river. His recreation was mathematics; in particular he 
studied conic sections: ellipses, parabolas, hyperbolas. Conic sections (see Plate 3) 
are images of circles under projection. If a circle is placed between a light source and 
a plane (a wall for instance) it produces a .shadow image on the plane; that shadow 
image is a conic section; the plane, as it were, cuts the image out of the circle's 
shadow cone. Poncelet considered the images of pairs of circles. Plate 4A shows 
some images that can be obtained by choosing circles of various position and size (in 
one plane): the image may be a pair of ellipses, or an ellipse and a parabola; the two 
curves may be separate or they may intersect in two points. Poncelet posed the 
question: can every pair of conic sections be obtained in this way? He found (see 
Plate 4) that if the two conic sections have no more than two points in common, they 
can indeed be obtained as simultaneous shadow image of two circles. It is not easy 
to see that that is so; Poncelet proved it and the proof is hard. He also noticed that 
if the two conic sections have three or four points in common they cannot be 
obtained by projection of a pair of circles. The latter result is, in fact, ea.sy to see: 
two circles whose images under projection have three or four points in common must 

In Babylonian mathematics numbers are written in a sexagesimal positional system with two basic 
signs V and \ . | stands for 1, but, dependently on the position, may also mean 60, 60x60, 60x60x60, 
or 1/60, (l/60)x(l/60), etc. < stands for 10 times V, and therefore signifies 10, or 600, or 1/6 etc. The 
interpretation of the number signs depends on the context (in this case the solution of a particular 
equation). Most lines on the tablet start (to the left) with a number. These numbers are: line 6: 183; 1, 
8 (in a column): 27, 15, 12; I. 9: 27; I. 11: 210; I. 12: 29; 1. 13: MV:; 1. 15: 210; 1. 16: %; I. 17: Vi] I. 19: 
Vr, 1. 21: 2; I. 23: 12: 1. 24: 15; 1. 25: 15; 1. 26: 15; 1. 28: 3; 1. 29: 183. Once one has indentified these 
numbers it is not difficult to trace the other numbers in the text. They are: 1. 8: 183, 180; I. 11: 2, 27 
(not fully readable); 1. 12: 29; 1. 13: 14V., 210W; 1. 14: 210M; 1. 16: M, H; I. 17: 14K;; 1. 18: 15; I. 19: 
14V5; I. 20: 14 (not fully readable); 1. 21: 27; I. 22: 14; I. 24: 12; 1. 25: 12, 180; I. 26: 12; 1. 28: 3, 180. 

H. Freudenthal, 5000 Jaren internationale wetenschap. Inaugural lecture Utrecht 9-12-1946 
(Groningen, 1946). 
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Plate 3 - Two circles in the vertical plane are projected from a point onto another plane. The images 
are conic sections (in this case ellipses). 

Plate 4 - Pairs of conic sections. The ones to the left have no more than two points of intersection; 
they can be obtained as images under projection of pairs of circles. Those to the right have four points 
of intersection; they cannot be obtained as projective images of pairs of circles. 
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themselves have three or four common points; but two (different) circles cannot have 
more than two points in common. 

So Poncelet found himself confronted with an impossibility. That was unfor
tunate for him because the theory he was developing at that time would have been 
much simpler if every pair of conic sections arose as the projection of a pair of 
circles.'' Now such a situation is not uncommon in mathematics and we have come 
to expect from mathematicians a specific reaction: if within the system on hand 
something is impossible, then one creates a new, extended system in which it can be 
done. If it is annoying that with ordinary numbers subtraction is not always possible 
(7 -5 can be done but 2 - 5 cannot) then one extends the system by creating new 
numbers, the negative ones. If one thinks that it should be possible to extract square 
roots from negative numbers as well as from positive ones, one introduces imaginary 
or complex numbers and then it can be done. If one wants parallel lines in a plane 
to have a point of intersection, just as non parallel ones, one introduces intersection 
points "at infinity." One would expect, therefore, that Poncelet did something similar. 
He could, for instance, introduce an imaginary centre of projection or imaginary 
circles. Many later mathematicians have interpreted Poncelet's work in this way, 
because while reading it they were misled by what they were used to. But if one 
reads carefully it appears that Poncelet did not proceed in this manner. He did not 
extend the object of geometry, that is, space. What, then, did he do? He introduced 
an extension of the rules of mathematical argument. He said: although it is impos
sible that two conic sections with four points of intersection arc the images by 
projection of two circles, we may, nevertheless, argue as if they are. Poncelet codified 
this extension of the rules of mathematical argument in a principle, his famous and 
notorious "Principe de Continuite." I shall not attempt to formulate that principle 
here in general; all Poncelet's own formulations of it were vague and rather unsatis
factory. In the case of the pairs of conic sections the principle implies that one may 
argue as follows: As any pair of conic sections with two or fewer points of intersec
tion is the image of a pair of circles, therefore it is allowed to reason as if that 
property applies in general, and hence one may proceed from the premise that the 
property also applies for pairs of conies with four intersections. This despite the fact 
that the latter statement is simply false. 

Well, that makes one wonder. Wonder, because Poncelet's reasoning reveals a 
way of thinking which is no longer common in mathematics. Arguments should be 
correct, they should not proceed from evidently false premises. Poncelet said that one 
could do precisely that - wonderful. The feeling of wonder entails a challenge and 
it is rewarding to take up that challenge. For if one takes Poncelet seriously here, 
accepting that he and other mathematicians in his time used the "Principe de 
Continuite" and reached results with it, then one perceives a way of thinking which, 
although unacceptable now, was fairly common at that time. It was a productive way 
of thinking even (for, surprisingly, almost all theorems that Poncelet derived with his 
Principle were correct), linking up interestingly with philosophical ideas current in 

The theory concerned properties of pairs of conic sections, in particular the property occurring 
in the "closure theorem" of Poncelet. For more details of this, see H.J.M. Bos, C. Kers, F. Oort, and 
D.W. Raven, "Poncelet's closure theorem," Expositiones Mathematicae 5, 1987, pp. 289-364. 
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the late eighteenth century.' Such aspects are noticed only when one is open to the 
working of wonder and mindful not to be side-tracked by expectations based on 
superficial recognition. 
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Plate 5 - Hofwijck; drawing by Christiaan Huygens (University Library Leiden, Ms Hug. 14, fol 5r). 

After these two short examples I would like to relate in somewhat more detail an 
episode from the history of mathematics which is part of my present research.* It 
may serve, I hope, to show why that research fascinates me. The episode began in 
the fall of 1692 in the village of Voorburg near The Hague, or perhaps in The Hague 
itself. In Voorburg was the summer residence of the Huygens family, "Hofwijck" (see 
Plate 5). It is still there, a smallish castle, not more than a broad tower in a moat; if 
you travel to The Hague from Utrecht you can see it from the train. The parking lots 
of Voorburg station have encroached on much of what once were the formal gardens 
of the estate. From 1688 on Christiaan Huygens lived at Hofwijck, although during 
the winter he preferred his apartment on the Noordeinde in The Hague. In 1692 
Huygens was 63 years old, his scientific career lay largely behind him. But he was still 
quite active, as his correspondence and manuscripts bear witness. Among the 
manuscripts there are ten sheets, dated 29 October-20 November 1692, of a 

Confer L.J. Daston, "The physicalist tradition in early nineteenth century French geometry," 
Studies in History and Philosophy of Science 17, 1986, pp. 269-295. 

(Note added in 1989.) See H.J.M. Bos, "Tractional motion and the legitimation of transcendental 
curves," Cenlaurus 31, 1988, pp. 9-62; and "Tractional motion 1692-1767, the journey of a mathematical 
theme from Holland to Italy," to be published in the Proceedings of the conference "Italian scientists in 
the I.OW Countries in the XVlIth and XVIlIth centuries" held in Utrecht 25-27 May 1988. 
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somewhat unusual character.' The editors of Huygens' Oeuvres Completes did not 
quite know what to do with them. They decided not to publish them in full but only 
to give a summary and some characteristic samples of the text. 

I think these sheets deserve more attention. They deal with the mechanical 
process of traction. Huygens studied in particular the tractional motion that occurs 
when a heavy body is dragged slowly over a horizontal plane by a cord or a rod 
which is fixed to the body and whose other end is moved along a straight line. The 
manuscripts show that Huygens devoted much time and energy to the problem of 
mechanically implementing this kind of tractional motion in such a way that the 
trajectory of the dragged object was marked precisely on the horizontal plane. He 
thought of fixing a weight on top of a drawing pin and dragging the system by a rod 
(see Plate 6). He sketched various ways of guiding the end of the rod along a straight 
line. The weight was to be put on top of the pin or perpendicularly below it, con
nected by a U-shaped rod around the table, evidently to avoid pushing the pin askew. 
We notice setscrews for placing the plane in an exactly horizontal position. Huygens 
also sketched (see Plate 7) a little cart tracing the curve while being drawn over the 
plane and he considered having a body float on a liquid surface (to ensure absolute 
horizontality); he thought of syrup (which provides much friction) or water. 

Plate 6 - Huygens' first sketches of the tractional instrument (University Library Leiden, Ms Hug. 6, 
fol. 59r). 

Plate 8 shows the design that ultimately satisfied Huygens best; as far as may be 
gathered from the documents he did indeed build the instrument and traced the 
curve with it. Even so he kept looking for alternatives; he elaborated upon the pos-

Leiden University Library, Ms Hug. 6. ff. 59r-68r. Summary and some quotations in C. Huygens, 
Oeuvres Completes, vol. 10, pp. 409-113. It is my pleasure here to thank the Library for permission to 
reproduce passages from Huygens' manuscripts. 



Recognition and Wonder 11 

r.C^<^' 

\y 

,^^Lj^'>':>y^/r/ 

• 

^A >/,>;v,-Xi<^ / / "^ ' ' 

V r ^ v ; 

Plate 7 - Detail from Huygens' manuscript on tractional motion (University Library Leiden, Ms Hug. 
6, fol. 64r). 
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Plate 8 - Huygens' final design of the tractional instrument (University Library Leiden, Ms Hug. 6, fol. 
66r). 
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sibilities of dragging floating objects; he also thought of increasing the friction of the 
body by using a retort that, after being heated, would suck itself tight to the surface, 
thus providing considerable friction. Furthermore Huygens devoted several pages to 
the method of placing the surface exactly horizontally with the help of a level - at 
that time a recent invention for which en passant he worked out a gauging procedure. 
The horizontal position of the plane is essential; were the plane oblique gravity would 
deflect the pin's motion from the direction of the cord and thereby the trajectory 
would be distorted. The possibility of such a sideways distortion rather worried him, 
at one point he went so far as to remark that the force of attraction does not act 
along parallel lines but in the direction of the earth's centre, so that in fact there can 
be only one point of the table where the gravity is truly perpendicular. 

t r ac t r i x 

Figure 1 

What is happening here? Why did Huygens undertake this study? Was his aim to 
describe tractional motion as a physical process? Or to make tractional motion 
appHcable to some practical purpose? No, Huygens' principal motivation lay el
sewhere. To explain that I must first specify what curve was involved here and which 
mathematical properties it has. Huygens called the curve traced by the dragged 
object the Tractoria; later the name Tractrix became generally accepted. The defining 
property of the curve is that the segment along the tangent between the axis and the 
curve remains constant, for that segment is equal to the length of the cord whose 
other end is moved along the axis; because of the friction the body follows at every 
instant the direction in which the cord pulls it (see Figure 1). The differential 
equation of the curve is therefore 

(2) dx 
y 

\ /a^ - 2/̂  

and one easily derives the equation of the curve by integrating the differential 
equation: 

(3) X — a log-
+ \ /a2 - j/2 

- yf^ 
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Huygens himself did not describe the relation between the coordinates x and y by 
means of this equation. He did know the relation but formulated it in more geomet
rical terms. In particular he was aware that it involved a logarithm. He interpreted 

Y V 
1 

5>v,̂ ^ h y p e r b o l a y = ^ 

Z X 
Figure 2 

that logarithm geometrically, namely as what he called the "quadrature of the 
hyperbola." We recognize in that expression the relation we write in terms of 
integration: 

^ da; 

X 

Indeed (see Figure 2) the integral in the right hand term denotes the area (the 
"quadrature") of the shaded part under the hyperbola with equation 

(5) y = - . 
X 

Let me return to the question of Huygens' motive for pursuing these investigations. 
Was his aim a mathematical description of the natural phenomenon of tractional 
motion? No, for that purpose Formula (3) would have been sufficient; the further 
investigation of methods to trace the curve accurately is superfluous. Nor, apparently, 
is there any practical purpose in the various manners of dragging that Huygens 
explored. Was it the precision of curve tracing, then, that was foremost in his mind? 
In a sense yes; Huygens stressed that the instruments should trace the curve very 
accurately. But there must have been more to it, because for mere accuracy of 
tracing Huygens could have used an easier and much more precise means, namely 
logarithm tables. With the help of such tables he could apply Formula (3) to calcu
late the coordinates of points of the curve with a precision that could never be 
attained by tracing on paper. If Huygens' concern was precision, then it was not 
practical but ideal precision. 

To find what did lay behind Huygens' concerns, let us see what he wrote 
himself about the motivation of his study. Here are some characteristic passages. In 
the first he compares his instrument with the classical geometrical instruments of 
straightedge and compass: 

(4) logz 
- ' , 
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It should be admitted that, if my curve is supposed or given, one has the quadrature of the 
hyperbola. So if I find some means to draw it as exactly as a circle is drawn by an ordinary 
compass, would I not have found that quadrature? ... It is true that I need the parallelism of a 
plane to the horizon; but that is possible, not in utmost precision, but like the straightness of a 
ruler. For the rest I draw my curve almost as easily as a circle and the machine I use comes very 
close to the simplicity of the compass.* 

With his first sketch of the body that is dragged over a fluid surface (see Plate 7) he 
noted that that construction "will solve the problem of the hyperbolic quadrature,"' 
and with,the drawing of the cart on the same sheet: "A little cart or a boat will serve 
to square the hyperbola."'" 

We conclude that Huygens' tractrix did not serve as a mathematical model to 
describe tractional motion, but conversely tractional motion so to speak helped 
Huygens to mathematically lay his hands on the tractrix, and thereby on the quadra
ture of the hyperbola and on all other geometrical problems that depended on it. 

Why was that necessary? Because apparently the quadrature of the hyperbola 
(we would say the logarithm function) was not considered truly known, and because 
a curve as the tractrix could not just simply be taken to serve as a solution of that 
problem. Now who decided these things? In this case it was Descartes. 

Some fifty years earlier Descartes had introduced the techniques of analytic 
geometry through which curves could be represented by equations. He had also 
forcefully voiced his opinion about what was acceptable in geometry and what was 
not, asserting that curves were acceptable only if their equations were algebraic, that 
is, if these equations involved no other algebraic operations than addition, multiplica
tion, division and subtraction. The tractruc does not have such an equation, it is a 
transcendental, that is, a non algebraic curve. Huygens had reaUzed that no algebraic 
equation could be formed for his curve and that therefore within the Cartesian 
demarcation of geometry the curve wasn't acceptable. That was what he objected to. 

I should add that at the time Descartes posited his demarcation of geometry it 
was not a restriction but an extension of the field. Before Descartes the boundaries 
of geometry, as far as they were explicitly formulated, were much more restricted. 
But Huygens already felt that the demarcation of Descartes was too restricted. He 
expressed that feehng on one of the first sheets of his study: 

Descartes was wrong when he dismissed from his geometry those curves whose nature he could 
not express by an equation. It would have been better if he had acknowledged that his geometry 
was defective in so far as it did not extend to the treatment of these curves. 

We may say that Huygens was primarily concerned to confer the predicate "geomet
rical" on his curve. This is also evident in the publication he devoted to the curve one 
year later. He explained tractional motion (although he did not ^ve details about his 
instrument) and wrote: 

Fol. 62r, also quoted in C. Huygens, Oeuvres Completes, vol. 10, p. 412n. Huygens wrote in Latin 
and French; here and in other quotations the translation is mine. 

() 
Fol. 64r, also quoted in Oeuvres, vol. 10, p. 41 In. 

'" Fol. 64r. 

" Fol. 60v. 
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If this description, which by the laws of mechanics must be exact, could pass for geometrical, in 
the same way as those of the conic sections, performed by instruments, one would thereby have 
the quadrature of the hyperbola, and together with that the perfect construction of all the 
problems that can be reduced to that quadrature.'^ 

And in a letter to Leibniz from this time Huygens noted with some anxiety that 
BernouUi had expressed doubts about the geometricity of the curve.'' 

Huygens, then, was not merely interested in making a precision instrument; his 
concern was to extend the boundaries of pure geometry. Now that is cause enough 
for wonder: a mechanical legitimation within mathematics? To extend the boundaries 
of pure geometry with weights, levels, carts, even with syrup? The wonder is inviting. 
Let us therefore examine the background of this way of thinking. 

To do so I first note that it was not just a Huygensian idiosyncracy to handle 
the legitimation question in such a tinkering do-it-yourself manner. The motif of 
tractional motion as mechanical legitimation of transcendental curves appeared 
repeatedly in the period of the early differential calculus. It was not a central theme 
in the development of mathematics but a recurrently interwoven motif, recognizable 
and familiar for contemporaries. Huygens published his ideas in 1693.''' They were 
immediately taken up by Leibniz who, characteristically, announced that he himself 
had hit upon the same idea earlier and produced a draft of a generalized tractional 
machine by which all manner of differential equations could be solved." Somewhat 
later De Moivre learned about a tractional instrument devised by a certain John 
Perks (see Plate 9) and found it interesting enough to have an article about it 
inserted in the Philosophical Transactions of 1706 entitled "The construction and 
properties of a new quadratrix to the hyperbola."'* In 1728 the Itahan scholar Poleni 
took up the theme again. He designed a tractional instrument (see Plate 10) and sent 
copies of it to three colleagues. In his covering letter he argued, again, that by means 
of his instrument the problem of the quadrature of the hyperbola was now for the 
first time solved in a geometrically acceptable manner. His correspondents reacted 
positively. One of them, Jacopo Riccati, took the opportunity to formulate at some 
length his opinion on the role of constructions in pure mathematics. Poleni published 
the fruits of his research a year later and added the letters he had received in an 
appendix." Also in Euler's work,'* and in the writings of Vincenzo Riccati (a son of 

12 
"Lettre de Mr Huygens a I'Auteur," Histoire des Ouvrages des Scavans, February 1693, pp. 244 

sqq; Oeuvres, vol. 10, pp. 407- 417, on p. 411. 
" Huygens to Leibniz, 17-9-1693, Oeuvres, vol. 10, pp. 509-512, on p. 510. 

See note 11. 

G.W. Leibniz, "Supplementum geometriae dimensoriae," Acta Erudilorum, September 1693; in 
Mathematische Schriften, ed. C.I. Gerhardt (Berlin, 1849-1863), vol. 5, pp. 294-301. 

J. Perks, "The construction and properties of a new quadratrix to the hyperbola," Philosophical 
Transactions, 1706 (no. 306). 

17 
Joh. Poleni, Epistolarum mathematicanim fasciculus (Padua, 1729), letter no. 7. 

18 
L. Euler, "De constructione aequationum ope motus tractorii aliisque ad methodum tangentium 

inversam pertinentibus," Commentarii Academiae Scientiarum Petropolilanae 8, 1736/1741, pp. 66-85; in 
L. Euler, Opera Omnia, Ser. 1, vol. 22, pp. 83-107. 
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Jacopo)" we encounter the theme of tractional motion. In all these cases the writer's 
interest was not primarily in the mathematical description of tractional motion, but, 
conversely, in the legitimation of transcendental curves as acceptable means of 
solving problems in mathematics. 

Plate 9 - John Perks' tractional instrument for the quadrature of the hyperbola; see note 16. 

Let me return now to Huygens. He was not alone in his interest in tractional motion 
in connection with the issue of the legitimate bounds of geometry. Our initial wonder 
has directed us to aspects of earUer mathematics that we do not recognize so easily. 
Let us try to further analyse this unfamiliar way of thinking to see what we have 
lighted upon. Huygens worked in a literal (but not the usual) sense at the frontier of 
his science. His concern was to remove the confines that mathematicians before him 
had drawn around geometry, and thereby to make acceptable and legitimate certain 
objects that previously were kept outside geometry. In doing so he fell back on 
mechanical imagery related to the classical means of geometrical construction, 
straightedge and compass. His efforts at legitimation had a definite aim: a legitimized 
object could serve as solution. Huygens thought that if the tractrix was legitimized as 
an acceptable geometrical object, the problem of the quadrature of the hyperbola 
would be solved, and thereby also all other problems that could be reduced to that 
quadrature. 

Legitimation bears upon the very structure of the mathematical enterprise: by 
legitimizing a mathematical object one may make certain problems solvable which 
earlier could not be solved. Thus we are indeed dealing with a crucial issue within 
mathematical activity: when may a problem be considered as solved? When may an 
object be accepted as sufficiently known? What are the criteria for solution and 
knowledge in geometry, or in mathematics generally? The debate on legitimation in 
which Huygens engaged was in fact part of an endeavour to establish such criteria. 

1752). 
Vincenzo Riccati, De usu motus tractorii in constructione aequationum differentialium (Bologna, 
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Plate 10 - Poleni's tractional instrument; see note 17. 

That endeavour was not restricted to the theme of tractional motion which I have 
used here as an illustrative example. We find similar discussions in many other 
regions of mathematics; they were occasioned for instance by the introduction of 
algebra in early modern geometry, and by the treatment of transcendental curves 
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within the early infinitesimal calculus. These and similar innovations were often 
accompanied by discussions on the question: When is a problem solved, when do we 
really know an object? 

At this point, of course, we have to expect an obvious objection: Don't mathematical 
problems ju.st have a solution? An answer, a number or a proof that is either correct 
or false? Surely we don't need comphcated legitimation in a matter of false or 
correct? The answer is: no, the matter is not that simple. Mathematics is an exact 
science, certainly, but first mathematicians have to reach some consensus about the 
question of what exactness means. The meaning of exactness cannot be arbitrarily 
imposed; mathematical reality enjoins strong restrictions. But ultimately exactness is 
a matter of consensus. That consensus grows and changes over time. The episode of 
tractional motion is of interest bccau.sc it provides us with an opportunity to study 
that process of growth and change. We sec how mathematicians try to give meaning 
to the concept of exactness. By legitimizing the tractrix the concept of exact geomet
rical solution is extended in such a way that the problem of the quadrature of the 
hyperbola becomes solvable. The process did not end there; subsequently ideas about 
exactness within mathematics moved again. But that does not make the process that 
we can watch here less important. 

The question was: when is a problem solved? Or, when is an object sufficiently 
known? It arose not only with respect to the quadrature of the hyperbola or the 
tractrix; time and time again it was posed and discussed during the period of early 
modern mathematics. It is revealing to study what mathematicians wrote about the 
question. Such a study helps in understanding the imagery and the terminology in 
mathematical texts. It explains, for instance, why for a long time curves were not 
primarily represented by their equations but by geometrical construction procedures, 
and why until well into the eighteenth century one called "construction" of a differen
tial equation what we call its solution. The study also sheds light on a number of 
seemingly peculiar phenomena and developments within mathematics. Such is the 
case with smaller matters, as the fascination with tractional motion, or, for instance, 
the remarkable preference, expressed by several mathematicians around 1700, for 
interpreting integrals as arclengths rather than as areas. But the understanding 
gained by pursuing the questions about the nature of solving and knowing in mathe
matics may also concern larger developments, such as the case of the "construction 
of equations" which for more than a century took a rather prominent place within 
mathematics and then vanished in a short time. 

Still, the arguments about the question of when a problem is solved remain in a 
certain sense elusive and unreal. Elusive because the question is in principle un-
decidable; hence one could, if desired, disagree forever. And unreal because the 
arguments do show a lack of depth and quality. Ultimately that lack is the main 
reason for our wonder about Huygens' tinkering with sliding weights, carts and syrup: 
it seems so meagre. And there are other such examples; for instance Leibniz' 
seriously meant suggestion not to carry logarithm tables for navigational calculations 
aboard ship but simply to suspend a chain freely in front of graph paper and read off 
the logarithms directly, using some mathematical knowledge about the catenary 
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curve.^ One meets more quasi-practical arguments of this sort and one wonders: 
could this be meant seriously? This remark leads us onto a somewhat different trail. 
For the important thing about the process is not the arguments but what is behind 
them. The questions was: when is a mathematical object sufficiently known to serve 
as the solution of a problem? Now "known-ness" is not an objective matter but a 
subjective one. What is considered known at present may have been seen as very 
problematical by an earlier generation. The logarithmic function, for instance, was 
problematical for Huygens; later mathematicians left it in equation (3) without 
further ado. Meanwhile they had not learned essentially more than Huygens knew 
about the function. They had done something else: they had become used to it. This 
explains why discussions about the interpretation of known-ness die out after some 
time, why they have legitimalory overtones, why they are undecidable and why the 
reasonings often seem so meagre. However seriously the arguments were meant, 
what was really at stake was the process of habituation that went on underneath. 

Of course such processes of habituation occurred not only in early modern 
mathematics, they belong to science in general. They are little studied. I think they 
deserve more attention because they are interesting and important. And thus the 
story of tractional motion may also serve as an illustration of the kind of processes 
in the development of science about which the history of mathematics may provide 
deeper insight. 

I have presented to you an episode from the history of mathematics, the story of 
Huygens, tractional motion and the tractrix. I have mentioned the questions which, 
stirred by wonder, one comes to ask about it and the trails one is led onto if one 
follows those questions. It is a small episode, taken from much broader develop
ments. I hope that, nevertheless, the story clarified and illustrated an approach which 
one could call history of ideas in mathematics. That approach primarily concerns the 
fundamental concepts of mathematics and the ideas, images and questions that arose 
among earlier mathematicians about these concepts. This is a part of the history of 
mathematics in which I feel much at home and I do think it important; but it is 
certainly not the only part of the field. 

The field which has gained a further academic confirmation by the present 
extraordinary professorate is much broader. It concerns a time period of more than 
5000 years. Cultures all over our globe have produced recognizable mathematics and 
have contributed to the development of that knowledge. In the historical study of 
these developments one may concentrate on ideas and concepts, but there are several 
alternative approaches. There is the social history of mathematics - an approach 
which I mention here as a matter of course, remembering with some wonder how 
much resentment and distrust could be stirred by combining the words mathematics 
and social some fifteen years ago. There is institutional history and the more 
biographically oriented approach. There is the history of mathematics in different 
cultures or countries, not least the mathematics of the Netherlands. It is also very 
rewarding to study the development of mathematics within the broader cadre of the 

G.W. Leibniz, "De la chainette, ou solution d'un problcme fameux, propose par Galilei, pour 
servir d'essai d'une nouvelle analise des infinis, avec son usage pour les logarithmes, et une application 
a Tavancement de la navigation," Journal des Sqavans, March 1692; in Mathematische Schriften, ed. 
CI. Gerhardt (Beriin, 1849-1863), vol. 5, pp. 258-263, in particular p. 262. 



20 H.J.M. Bos 

general history of science, tracing the role of mathematics in the human endeavour 
to understand and control nature, in the successes and failures of that enterprise and 
in the succession of styles, currents, -isms, revolutions and normal periods which we 
have come to distinguish in the long history of that endeavour. I am convinced that 
all these approaches are meaningful and that they may find a place within teaching 
as far as the time, ability and interest of the students allow that. For research the 
constraints of time and ability impose a stronger restriction. My personal choice of 
research themes is in the sphere of what I called above the history of ideas in 
mathematics. That is because it suits me, not because it should be considered the 
best approach to the mathematical past. 

There remains one crucial question: what is history of mathematics about? What is 
the object that is investigated and taught about? Is it mathematics as it was in the 
past (and which is now dead)? No, that formulation disregards the importance of 
recognition and wonder. Recognition and wonder remind us that history is done by 
and written for people who are alive now. To conceive of the object without keeping 
that relation with the present in mind is misleading; it is impossible to switch off the 
present while studying the past. 

And here appears the well-known metaphor of history as collective memory; 
that metaphor satisfies me best in answering the question of what history of mathe
matics is about. History of mathematics is history and thereby part of the collective 
memory of our cukure. In that way the field, together with history of science, finds 
its place within general history. It is a modest place, and not easily accessible, 
because to revive that particular memory requires a considerable familiarity with 
mathematics. However, hi.story of mathematics is also, and in particular, the collec
tive memory of the community of mathematicians. Here hes, I believe, the primary 
importance of the field, and therefore also the answer to the question of what history 
of mathematics is about. As for individuals, or for nations, so also for a scientific 
field, a community of scientific colleagues, it is important to take memories seriously, 
not to suppress one's own past, if necessary to recall half forgotten events, and in any 
case not to dismiss this past as unimportant, puerile or immature. History of mathe
matics thus assists in the self-reflection of a discipline. That, I honestly think, is very 
important. I hope to contribute to that self-reflection by my work. 

Summary 

Two short examples from the history of mathematics, a Babylonian mathematical clay tablet and a 
principle advocated by the early 19th century geometer Poncelet, are adduced to illustrate the role of 
recognition and wonder in the historian's activity. Then Christiaan Huygens' 1692 studies on tractional 
motion are discussed. These studies led Huygens to define and investigate the Tractrix, which is the 
curve generated by the simplest kind of tractional motion. It is shown that Huygens* interest in the 
curve and in the motion generating it originated in a concern about geometrical exactness. Finally some 
thoughts are expressed about history of mathematics and its function with respect to the collective 
memory of the community of mathematicians. 
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